Thursday, March 30, 2017

Amgen share price and PCSK9 inhibition with Repatha (2)

I had an email from a PR company representing Amgen, re Repatha and all cause mortality. Here's the bit of interest:


I respect your opinion, but did want to share some additional information with you regarding the 2-year length of the study.

FOURIER was an event-driven study and was to conclude when least 1,630 hard major adverse cardiovascular event (MACE) events were accumulated. Amgen expected the study to run for 43 months with a 2 percent annual event rate in the placebo arm. However, the annual event rate in the placebo arm exceeded 3 percent and led to a faster accumulation of hard MACE events. Since the relative risk reduction in the hard MACE composite endpoint grew from 16 percent in the first year to 25 percent beyond 12 months, Amgen anticipates that a longer duration trial would have led to further relative risk reduction.

Would you please consider correcting this sentence of your post?

“The study was stopped early, presumably to stop the hard end points of dead patients from becoming too obvious.”


You can see how Amgen made their decision. Am I incorrect in my presumption about why the study was terminated early?

Well, technically yes. The protocol is laid out. That's unarguable. So they have a point and have designed the study well, from their point of view.

The fact that 444 people died in the treatment arm vs 426 in the placebo arm was not statistically significant, despite representing a 4.2% increased relative risk of death over the study duration.

What seems to concern Amgen is the implication that all cause mortality had any influence on the decision to terminate the study early. Obviously I cannot know whether this is the case and Amgen are certain that my presumption is incorrect. So maybe some compromise:

If we go with this I can reword the sentence to:

“The study was stopped early due to an unexpected excess of combined cardiac adverse end points in the placebo arm. At this time point the 4.2% increase in relative risk of all cause mortality in the treatment arm was not statistically significant”.

I don't think these facts are arguable with.

Well, that's been interesting. I feel somewhat honoured to have been contacted by a company representing Amgen to correct my presumptions!


Sunday, March 26, 2017

The pathology of evolution

Aaron posted the link to this paper via Facebook:

Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes

As the authors comment in the discussion:

"Agricultural diets would have led to a higher consumption of grains and other plant-derived foods, relative to huntergatherer populations. Alleles that increase the rate of conversion of SC-PUFAs to LC-PUFAs would therefore have been favored".

Or to rephrase it slightly, from the legend of Fig 6:

"The adoption of an agricultural diet would have increased LA and decreased ARA and EPA consumption, potentially causing a deficiency in LC-PUFAs".

This is something I have thought about, in more general terms, for some time.

At the time of the switch from hunting animals for their fat to growing grains for their starch the paper suggests that there was a population-wide potential deficiency of the longer chain PUFA, arachidonic acid, EPA and DHA.

This applied a selection pressure to the population. Within the population there was a random distribution of the ability to elongate and desaturate linoleic and alpha linolenic acids to their longer chain derivatives.

People who had this ability in generous amounts did well. Those without, didn't.

What happened to those people who were "without" the lucky gene snps to survive well without animal derived lipids? They didn't "develop" the genes, no individual suddenly develops a better gene. Their intrinsic inability means they didn't reproduce as successfully.

Their genes are currently under represented in the gene pool today.

It has always struck me that the process of getting poorly adapted genes out of the gene pool is what we describe as pathology, illness. Trying to patch it up is what we call medicine. Individuals don't adapt. They either do well or badly. The population "adapts" through the illnesses of those whose genes are not appropriate to the new environment.

The adaptation of our species to the novel situation of agriculture is far from complete. On-going adaptation of a species to a new environment is via the suffering of the individuals with genes more appropriate to the previous long term stable environment. The default for a person with on-going pathology might be to step back 10,000 years rather than continuing to assist evolution of the species via personal pathology. A lot of pathology will be needed.

Miki Ben-Dor has a nice post along these lines this on his blog.


Of course the adaptation to sucrose and bulk seed oils has only just begun. LOTS of pathology needed to adapt the species to those two! Juvenile onset type 2 diabetes is what we call the process.

Saturday, March 25, 2017

Amgen share price and PCSK9 inhibition with Repatha

Just a one-liner to bookmark the death of Repatha.

PCSK9 inhibitors have bombed and the cardiology community is in complete denial. Now this is nothing new, it happens on a regular basis. Repatha produced a massive drop in LDL cholesterol and a small drop in cardiac end points. It also produced a small (ns) rise in both total mortality and cardiovascular mortality.

I have altered the sentence which used to be here in response to a request from a PR company representing Amgen!!!!!! There's a post about it here.

No-one should ever listen to the cardiovascular community on a cholesterol lowering drug. Instead, just look at the share price of Amgen:

The red arrow indicates the release date of the FOURIER study data on March 17th 2017. It's a acute adverse event signalling the failure of a blockbuster drug. The trend in share price also indicates the conversion of an upward trend in price to a downward trend at the time of this adverse event.

As always, the cholesterol hypothesis is dead. It keeps on being killed but, obviously, it never lies down!

Amgen have invested an unimaginable amount of money in their PCSK9 inhibitor. This is a gross failure of basic research. A nerd with smart phone could have told them they were gambling on a very long shot.

They lost.


Friday, March 24, 2017

Will palmitic acid give you cancer or fuel metastasis?

Again thanks to Mike Eades for the full text of this paper and to Marco for poking me about it.

Targeting metastasis-initiating cells through the fatty acid receptor CD36

The executive summary: Both feeding a high fat diet to mice then implanting a certain type of cancer cells or feeding palmitic acid to that certain type of cancer cells pre-implantation makes the cancer much more aggressive once implanted. Up-regulating CD36 (described as a fatty acid transporter) has the same effect.

So. The question is: Should we all abandon high fat diets because fat, particularly palmitic acid, appears to be a promoter of aggressive metastasis?

I have thee things I'd just like to discuss.

I suppose the first is CD36. This is long accepted as a fatty acid transporter which facilitates the entry of FFAs in to those cells which express it on their surface. As far as I was aware this was all it did. My bad. The authors do mention that it promotes the uptake of other substances, including oxLDL, as an aside (they didn't look at this) and they do cite Hale's study using glioblastoms, which is rather more explicit about what CD36 really is:

Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression.

"We confirmed oxidized phospholipids, ligands of CD36, were present in GBM [glioblastomas] and found that the proliferation of CSCs [cancer stem cells], but not non-CSCs, increased with exposure to oxidized low-density lipoprotein".

CD36 is a scaveneger receptor which promotes the uptake of all sorts of lipids and oxidised phospholipids. Of course you can't help but think of 13-HODE and all of the other oxidised omega 6 PUFA derivatives which might or might not have been available to be taken up using extra CD36 receptors. This was not the point of the study, the study was aimed at nailing palmitic acid, to which I will return.

The second point relates to the mice fed the high fat diet.

The mice were fed TD.06414, essentially the same as D12492. Scroll to the bottom of the page to see the metabolic effects!

Lard and sucrose/maltodextrin, designed to produce obesity, hyperglycaemia, hyperinsulinaemia and hyperleptinaemia. No one measured the linoleic acid content of the diet so we can assume, very safely, that the approximate 16% of PUFA in the fat suggested by the manufacturer, is a gross under estimate. No one would expect a diet like this to be anything other than cancer promoting. Throwing in a few extra CD36s will make it worse. Is palmitate the problem in these "high fat" fed mice or is it 13-HODE, other PUFA oxidation products, insulin or leptin?

Point three is the one I'm currently interested in.

Pre incubation of the CD36+ cancer cells with 400micromolar unadulterated palmitic acid, for just 48 hours pre-implantation, promotes markedly increased metastasis when they are injected in to the mouse model. No PUFA, no 13-HODE, no hyperinsulinaemia. Just palmitic acid.

This is undoubtedly the money shot for the research group.

Now, what is going on here? From the focus of my blogging at the moment it's clear that palmitic acid is the highest driver of FADH2 input in to the ETC short of stearic acid. What will 48 hours of high level, uncontrolled FADH2 drive do to reverse electron transport (RET) and the structural integrity of complex I?

This is a model. A concentration of 400micromol palmitate, with no other FFAs, just never happens in real life. This model of extreme palmitate induced RET will force mitochondria to disassemble a pathological amount of their complex I. That's pretty obvious from the work of Guarás. The function of complex I is to reduce the NADH:NAD+ ratio and so disassembling complex I will do the inverse and raise NADH per unit NAD+. I went through the relevance of changes in this ratio, specifically for the generation of aggressive metastatic cancer phenotypes, in 2013 when I posted about Hoffer and B3 therapy for cancer prophylaxis and the modern versions using all of the clever stuff we do nowadays.

Of course you have to wonder about point two above; how much of the cancer promoting effect of obesity might be from the pathology of concurrently elevated fatty acids (reducing complex I availability so NAD+ generation) combined with elevated glucose (supplying the maximum amount of NADH) acting via the NADH:NAD+ ratio, never mind 13-HODE etc. A double whammy.

Personally I'm not about to give up eating butter on the basis of this paper. But that's just me I guess.


BTW, will blocking CD36 be an anti-cancer adjunct? Quite possibly, especially if it blocks 13-HODE entry in to the cell. Or even if it blocks FFA entry when people can't be ars*d to avoid hyperglycaemia while ever they have chronically elevated FFAs.

Thursday, March 23, 2017

Just a little on complex I and models

OK, just a brief summary of the parts I like most from the excellent

The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.

We should all have a picture of the ETC looking a bit like this, omitting mtG3Pdh and ignoring supercomplex formation:

Guarás et al set up a model, a proof of principle extreme. They blocked the ETC completely at either complex III, or at cytochrome C or at complex IV. They even discussed short term oxygen deprivation as a generator of ROS, equivalent of blocking the extreme end point of the ETC. If you completely block the ETC in this way then any input through FADH2 containing enzymes to CoQ will always generate a massively reduced CoQ pool, one prerequisite for reverse electron transport (RET),

leading to the near complete disassembly of complex I. It's a model, an extreme version of reality. Fascinating in its own right, as was the ability of the fungal CoQH2 oxidase (AOX) to protect complex I completely from any of the engineered ETC defects:

AOX may not pump any protons but it does preserve complex I by reducing the extreme levels of CoQH2 which drive RET.

They subsequently went on to look at more physiological ways to generate RET and came to the conclusion that, as the balance of inputs from NADH vs FADH2 shifted, then the amount of complex I relative to complex III would need to be altered. RET is the physiological signal to balance complexes I and III against NADH and FADH2 supply.

Elegant is not the word.

They even went on to ascertain which cysteine residues were preferentially oxidised to disassemble the complex. They group around the FMN and the CoQ docking area, surprise surprise... OK. If you insist, here is the ribbon diagram from fig 5:

There's a lot of explanation in the text of what the colours and the asterisks mean.

All I really wanted to lay down with this post is that there is a physiological process where FADH2 inputs control complex I abundance. That is how it should be.

When you want a pathological model of complex I destruction, pathological levels of FADH2 input will deliver.


Thursday, March 16, 2017

Protons: More from Dr Speijer

Mike Eades forwarded this paper to me, by Dr Speijer:

Being right on Q: shaping eukaryotic evolution

How good is it?

He covers a vast field including loads on

The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.


Supercomplex assembly determines electron flux in the mitochondrial electron transport chain

and even

Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species (another gift from Mike Eades).

I've far from finished reading the paper, these are just some of the gems. At some point I really will get round to a bit more on complex I and RET to regulate susbstrate processing but there is rather a lot happening at home and there might be something of a delay. To say the least.


Stearic acid, FADH2, complex I and cancer

Just a quick aside:

George cited this study in the comments of the last but one post:

Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis

While I think it is possible that metformin might inhibit mtG3Pdh at levels below those which inhibit complex I, the complex I effect may well still be equally real.

He goes on to say:

"Remodelling the ETC - I like that. The idea of the ETC as a modular assembly that will be reconfigured as the substrate balance shifts. Directly by the effects of the substrates on its outputs".

Remodelling the ETC using RET from FADH2 inputs might be antineoplastic too ie, less complex I would then be available for whatever ox phos the cancer is capable of…

Now: What normal food will generate the highest FADH2 input to the ETC per unit NADH? Correct, stearic acid will.

So what does stearic acid do to breast cancer cells in culture?

Stearate preferentially induces apoptosis in human breast cancer cells

Does it work in a rodent model?

Dietary stearate reduces human breast cancer metastasis burden in athymic nude mice

Do people with breast cancer have low stearate levels in their cell membranes?

Erythrocyte membrane fatty acid composition in cancer patients

Does stearate-driven RET down regulate complex I availability in cancer cells which are partially dependent of glucose derived NADH oxidation via said complex I? And so kill them?



That poor old C57Bl/6 mouse

There is a is a link within the Guarás et al CoQ paper I put up in the last post (which I'll probably go back to in some detail in future posts). It's to a paper by Lapuente-Brun et al:

Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain

Here is my doodle, butchered from elsewhere, of the  Supercomplex (SC), also known as the Respirasome:

The things to note are the assembly of complexes I, III and IV in to one unit and that there are enclosed molecules of both CoQ and Cytochrome C within the SC. These electron transporters are isolated from their respective general membrane pools so as to ensure maximal efficiency of electron transfer within the integrated SC.

The SC doesn't just happen. It's glued together by specific assembly proteins. In particular C III and C IV are joined by a protein called Cox7A2l (to be renamed supercomplex assembly factor I, SCAFI).

Unless you are a C57Bl/6 mouse.

If you are a C57/Bl/6 mouse your SCAFI  is 4 amino acids too short. It doesn't work.

The whole, excellent, paper by Lapuente-Brun et al is really about supercomplex formation and preferential assembly of the basic complexes. But because it uses the broken C57Bl/6 as an example of defective respiration it does bring home how irrelevant this particular mouse might be to more humans with a more normal metabolism.

Quite how this defect of SC assembly might make that the C57Bl/6 mouse in to the strange metabolic item which it is is not clear.

But, at the core of normal respiratory supercomplex formation, the Bl/6 mouse broken. That's an awful lot of mouse research which is broken. You could almost feel sorry for obesity researchers. But not quite.

Just sayin'.


Thursday, March 09, 2017

Protons: The destruction of complex I

It is quite difficult to express how exciting this paper is to a Protons thread True Believer:

The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.

The paper covers essential everything I've worked at over the past few years about the ratio of NADH to FADH2 as inputs to the electron transport chain. They even give Dr Speijer an honourable mention. I like these people.

Look at the Graphical Abstract, it's pure Protons:

And these are their highlights:

But, as hinted in the highlights, they take it to another level, beyond where I've gotten to in Protons:

The destruction of complex I by eating saturated fat. Or by generating a few ketones.

Fantastic stuff.